Algebra 2

10-06 Modeling with Trigonometric Functions

- Trigonometric functions are \qquad
- Useful for modeling \qquad motions or \qquad patterns
- Period (T)
- Time of \qquad
- Unit: \qquad
- Frequency (f)
- Cycles per \qquad
- Unit: \qquad

$$
T=\frac{1}{f}
$$

Find the frequency
$y=2 \cos 3 x$

$$
y=\sin 3 \pi x
$$

Write Trigonometric Models

1. Find the \qquad (\qquad of max and min)
2. Find the \qquad
3. Find the \qquad
4. If the situation starts at zero, use \qquad
a. If starts increasing \qquad
b. If starts decreasing \qquad
5. If the situation starts at a maximum or minimum use \qquad
a. If starts at max \qquad
b. If starts at min

An audiometer produces a pure tone with a frequency f of 1000 hertz (cycles per second). The maximum pressure P produced by the tone is 20 millipascals. Write a sine model that gives the pressure P as a function of the time t (in seconds).
\qquad

Write a function for the sinusoid shown.

Two people swing jump ropes. The highest point of the middle of each rope is 80 inches above the ground and the lowest point is 2 inches above the ground. Each rope makes 2 revolutions per second. Write a model for the height h (in inches) of one of the ropes as a function of the time t (in seconds) given that the rope is at its lowest point when $t=0$.

The tables show the average monthly low temperatures D (in degrees Fahrenheit) in Erie, Pennsylvania, where $t=1$ represents January. Write a model that gives D as a function of t and interpret the period of its graph. Use technology.

t	D	t	D
1	21	7	64
2	21	8	62
3	28	9	56
4	38	10	45
5	48	11	37
6	58	12	27

568 \#1, 3, 5, 7, 9, 11, 12, 13, 15, 17, 19, 20, 21, 23, 25, 32, 33, 37, 45, 47 = 20

